Course Code TEE 812	Credit Hours (Th-Pr) 3.0-0	Advanced Fluid Dynamics (Elective)	Contact Hrs/Wee k (Th-Pr) 3.0-0	Total Contact Hrs (Th-Pr) 45-0
---------------------------	-------------------------------------	---------------------------------------	---	--

Course Outline:

This course will cover principles of fluid dynamics: Tensors, model testing, description of flow fields, laws for mass, momentum and energy. Inviscid flow: Euler and Bernoulli equations, potential flow. Viscous flow: Navier-Stokes equations, boundary layers, turbulence. Element of Stability Theory. Turbulent Flows. Compressible Flows and Introduction to CFD.

Eligibility Criteria:

- B.E in Mech., Elect (Power), Chemical, Industrial, Process
- B.S (4-years) Or M.Sc. degrees in Physics

Recommended Books:

S.	Title	Author(s)	Assigned	Remark
No.			Code	S
1.	Fluid Mechanics:	Yunus A. Cengel	YC	Text
	Fundamentals and			
	Applications			
2.	Introduction to	Fox W. Robert, McDonald T.	RM	Referenc
	Fluid Mechanics	Alan		е
3.	Fluid Mechanics	P. K. Kundu &I. M. Cohen	KM	Referenc
				е

Course Objectives:

The course is helpful for understanding of the relationship between the mathematics, the physics and the modeling of fluid mechanics. It will develop proficiency in the analysis of fluids systems with mathematical modeling, measurement tools, and computer technologies. The students can understand the application of fluid mechanics to thermal energy systems and other fluid phenomena.

Learning outcome:

The focus of the course is to solve problems in industry. The course is intended to provide students with the following benefits:

- a. Understanding the concept of fluid and the models of fluids
- b. Understanding the basic physical meaning of general equations
- c. Understanding the concept of stream function and potential function
- d. Ability to derive the equation for viscous flow, including laminar flow and turbulent flow
- e. Ability to address such problems in engineering, and to solve the problems
- f. Ability to cooperate with the team members

Topics Covered:

No.	Topics	Text	Contact
		Book	Hours
1	Concepts and Fundamentals	YC,RM	3
	Definition and properties of Fluids, Fluid as continuum,	&KM	
	Langragian and Eulerian description, Velocity, and		
	stress field, Fluid statics, Fluid Kinematics.		
2	Governing Equations of Fluid Motion	YC,RM	4
	Reynolds transport theorem, Integral and differential	&KM	
	forms of governing equations: mass, momentum and		
	energy conservation equations, Navier-Stokes		
	equations, Euler's equation, Bernoulli's Equation		
3	Solutions of Navier-Stokes Equations	YC,RM	4
	Couette flows, Poiseuille flows, Fully developed flows in	&KM	
	non-circular cross-sections, Unsteady flows, Creeping		
	flows		
4	Potential Flows	YC,RM	7
	Revisit of fluid kinematics, Stream and Velocity potential	&KM	
	function, Circulation, Irrotational vortex, Basic plane		
	potential flows: Uniform stream; Source and Sink; Vortex		
	flow, Doublet, Superposition of basic plane potential		
	flows, Flow past a circular cylinder, Magnus effect;		
	Kutta-Joukowski lift theorem; Concept of lift and drag		
5	Laminar Boundary Layers	YC,RM	6

	Boundary layer equations, Boundary layer thickness,	&KM	
	Boundary layer on a flat plate, similarity solutions,		
	Integral form of boundary layer equations, Approximate		
	Methods, Flow separation, Entry flow into a duct.		
6	Elements of Stability Theory	YC,RM	5
	Concept of small-disturbance stability, Orr-Sommerfeld	&KM	
	equation, Inviscid stability theory, Boundary layer		
	stability, Thermal instability, Transition to turbulence.		
7	Turbulent Flow	YC,RM	7
	Introduction, Fluctuations and time-averaging, General	&KM	
	equations of turbulent flow, Turbulent boundary layer		
	equation, Flat plate turbulent boundary layer, Turbulent		
	pipe flow, Prandtl mixing hypothesis, Turbulence		
	modeling, Free turbulent flows.		
8	Compressible Flows	YC,RM	7
	Speed of sound and Mach number, Basic equations for	&KM	
	one dimensional flows, Isentropic relations, Normal-		
	shock wave, Rankine-Hugoniot relations, Fanno and		
	Rayleigh curve, Mach YC,RM &KM waves, Oblique		
	shock wave, Prandtl-Meyer expansion waves, Quasi-one		
	dimensional flows, Compressible viscous flows,		
	Compressible boundary layers.		
9	Computational Fluid Dynamics (CFD)	YC,RM	4
	Boundary conditions, Basic discretization - Finite	&KM	
	difference method, Finite volume method and Finite		
	element method.		